Acta Facultatis Ecologiae

Journal of Faculty of Ecology and Environmental Sciences Technical University in Zvolen

Volume 12 Supplement 2 2004

VI. Banskoštiavnické dni 2004

Environmentálne dopady energetiky na ŽP Trendy v environmentalistike a rádioenvironmentalistike

Edited by Peter Hybler

Acta Facultatis Ecologiae

Journal of Faculty of Ecology and Environmental Sciences Technical University in Zvolen

Periodikum Fakulty ekológie a environmentalistiky Technická univerzita vo Zvolene

VI. Banskoštiavnické dni 2004

Environmentálne dopady energetiky na ŽP Trendy v environmentalistike a rádioenvironmentalistike

Edited by Peter Hybler

Volume 12 Supplement 2

2004

Editorial Board

Editor-in-Chief Vladimír Konrád

Executive Editor Peter BITUŠÍK

Members

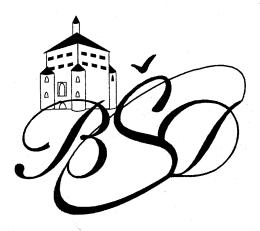
Miroslav Badida (Košice), Jozef BLAHO (Banská Štiavnica), PAVEL JANOŠ (Ústí nad Labem), Ladislav Jedlička (Bratislava), Jozef Klinda (Bratislava), Mária Kozová (Bratislava), Peter Krchnák (Banská Štiavnica), Juraj Ladomerský (Banská Štiavnica), Rudolf Midriak (Banská Štiavnica), Andrej Oriňák (Prešov), Wlodzimierz Pradzyňski (Poznań), Ján Supuka (Nitra), Peter Urban (Banská Bystrica)

List of Reviewers Acta Facultatis Ecologiae 12, Suppl. 2 VI. Banskoštiavnické dni 2004

Jozef Blaho (Banská Štiavnica), Ladislav Dzurenda (Zvolen), Ján Chrapan (Banská Štiavnica), Matej Florek (Bratislava), František Kačík (Zvolen), Eva Michalková (Banská Štiavnica)

> Linguistic cooperation Renáta MIKULÁŠOVÁ (Banská Štiavnica)

Recommended citation:


Hybler P. (Ed.) 2004: VI. Banskoštiavnické dni 2004: "Environmentálne dopady energetiky na ŽP. Trendy v environmentalistike a rádioenvironmentalistike", Acta Facultatis Ecologiae, 12, Suppl. 2, ...pp. Article author 2004: Article title. In Hybler P. (Ed.), VI. Banskoštiavnické dni 2004: "Environmentálne dopady energetiky na ŽP. Trendy v environmentalistike a rádioenvironmentalistike", Acta Facultatis Ecologiae, 12, Suppl. 2: 129 pages.

© Technická univerzita vo Zvolene

ISSN 1336-300X

Fakulta ekológie a environmentalistiky TU Zvolen Slovenská nukleárna spoločnosť Úrad pre normalizáciu, metrológiu a skúšobníctvo SR Asociácia priemyselnej ekológie na Slovensku Slovenské elektrárne a. s., AE Mochovce Slovenské elektrárne a. s., AE Jaslovské Bohunice Združenie pre reguláciu rizika z radónu W-Ekoklub, Banská Štiavnica

VI. Banskoštiavnické dni 2004

Environmentálne dopady energetiky na ŽP Trendy v environmentalistike a rádioenvironmentalistike

v dňoch 6. – 8. 10. 2004 (areál FEE TU Zvolen, Banská Štiavnica, Kolpašská 9B)

Obsah/Contents

Predslov/Preface	
Sekcia nukleárnych technológií Section for nuclear technologies	
Vasil KOPRDA Radioaktívny odpad a zadná časť palivového cyklu jadrových elektrární na Slovensku Radioactive waste and the back part of fuel cycle of nuclear installations in Slovakia	
Radoslav Böhm, Karol Holý Hodnotenie radónového rizika dozimetrickým prístupom The assessment of radon risk by dosimetric approach	
Silvia DULANSKA, Katarína OLÁHOVÁ Korelácia rádionuklidov v rádioaktívnych odpadoch Correlation of radionuclides in radioactive waste	
Peter CHNAPKO, Ondrej SLÁVIK, Vojtech NIŽNANSKÝ Kontaminované zeminy v areáli SE-VYZ v rámci vyraďovania jadrovej elektrárne A-1 Management of radiactively contaminated soil within the frame of NPP A-1 decommissioning 25	
Jozef KURUC, Alexander CEKLOVSKY, Pavol RAJEC The Determination of ²²⁶ Ra in water samples	
Pavol RAJEC Moderné separačné metódy pre izoláciu rádionuklidov Modern separation methods for radionuclide isolation	
Magdaléna VIČANOVÁ, Denisa NIKODEMOVÁ, Alena HUŤKOVÁ, Zuzana KOREŇOVÁ Medzilaboratórne porovnanie merania koncentrácie radónu v pôdnom vzduchu Intercomparison of soil radon concentration measurements	
Magdaléna VIČANOVÁ Sledovanie radiačnej záťaže pracovníkov jaskýň z expozície radónu Radiation load from radon exposure of cave staff	
Radoslav Вонм, Karol Holý Hodnotenie radónového rizika mikrodozimetrickým prístupom The assessment of radon risk by microdosimetric approach	
Štefan Húšťava, Ladislav Halada Využitie veľkoobjemových proporcionálnych detektorov na detekciu zdrojov žiarenia gama Utilisation of large-volume proportional detectors for gamma radiation sources measurement	
Miroslav Hornik, Juraj Lesný, Martin Pipíška, Jozef Augustín Obmedzenia použiteľnosti metód fytoextrakcie na remediáciu pôdy kontaminovanej rádiocéziom Limitations of applicability of phytoextraction methods in remediation of soil contaminated with radiocesium	

Lucia Závodská, Juraj Lesný	
Štúdium kinetiky sorpcie Sr ²⁺ na pôdnych matriciach	
Kinetic study od Sr ²⁺ sorption on soil matrices	
V. Semenov	
Radiation risk in the structure of overall risk	73
Radiation fisk in the structure of overall fisk	······································
Andrej Mozzeš	
Možnosti pôdnej emanometrie pri posudzovaní vplyvov na ž	životné prostredie
Soil emanometry possibilities in the assessment of different in	nfluences on the environment
Iveta Smetanová, Karol Holý, Anna Polášková, Igor Túnyi,	Gideon STEINITZ
Radon monitoring at Modra Astronomical and Geophysical	Observatory – the results
of the first year of observation	
Sekcia environmentálneho inžinierstva	
Section for environmental engineering	
Dagmar Samešová	х. Х
Aspekty odpadového hospodárstva v environmentálnom systé	éme riadenia podniku
Acpects of waste management in the environmental system of	
Pavel Janoš, Milena Rýznarová, Hana Buchtová, Sylvie Grön	TSCHELOVÁ
Netradiční sorbenty pro čištění odpadních vod	
Non-conventional sorbents for wastewater treatment	101
Jaroslav Dемко	
Environmentálne aspekty spaľovania biomasy alebo čo s pop	oolom zo spaľovania biomasy
Environmental aspects of biomass incineration or what to do	
incineration	
Andrea Bujnová, Vasil Koprda, Juraj Lesný	
Využitie slovenských zeolitov k obohacovaniu pôd zinkom a	znižovaniu hladín kadmia
The exploitation of Slovak natural zeolites and zeolone to en	
and to decrease of Cd levels	
Juraj Ladomerský, Emília Hroncová, Vladimír Vargovčík	
	vo na tvorbu emisií
Volvy podmienok manuálnej regulácie kotla spaľujúceho drev	
Vplyv podmienok manuálnej regulácie kotla spaľujúceho drev Emissions' producton dependency on conditions of the wood	
Vplyv podmienok manuálnej regulácie kotla spaľujúceho drev Emissions' producton dependency on conditions of the wood	
Emissions' producton dependency on conditions of the wood	

THE DETERMINATION OF ²²⁶Ra IN WATER SAMPLES

Jozef KURUC, Alexander CEKLOVSKY, Pavol RAJEC

Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic, <u>kuruc@fns.uniba.sk</u>

ABSTRACT

Kuruc J., Ceklovsky A., Rajec P.: The Determination of ²²⁶Ra in water samples

The objective of this work was to develop a method for determination of ²²⁶Ra volume activities of ²²⁶Ra in drinking water, using of radon emanation technique. This specific method for ²²⁶Ra is based on the emanation and scintillation counting of ²²²Rn, a daughter product of ²²⁶Ra. The ²²⁶Ra from the water sample is separated by co-precipitation on barium sulphate. The precipitate is dissolved in EDTA reagent, placed in a sealed bubbler and stored for ingrowths of ²²²Rn. After ingrowths, the gas is purged into a scintillation cell. When the short-lived ²²²Rn daughters are in equilibrium with the parent (4h), the scintillation cell is counted for alpha activity. All results were in range from 0.017 Bq.dm⁻³ to 1.54 Bq.dm⁻³. This measurement proved that the separation technique and measurement method are fully applicable for determination of ²²⁶Ra in drinking water samples.

Key words (INIS): radium 226; radon 222; radiation monitoring; drinking water; dose commitments; radioecology; site characterization

Introduction

Radium is a naturally occurring radioactive element formed by the decay of uranium in the environment. It occurs at low levels in virtually all rocks, soil and water. There are several methods to determinate radium in water, such as alphaspectrometry, liquid scintillation counting, radon emanation technique and also modern extraction methods for fast radium analysis. The objective of this work was to develop a method for determination of ²²⁶Ra volume activities of ²²⁶Ra in drinking water using of radon emanation technique.

The method is based on emanation and consequential scintillation detection of ²²²Ra and its daughter nuclides ²¹⁸Po and ²¹⁴Pb (activity of ²¹⁴Bi is neglected, because α -decay on the ²¹⁰Tl represents only 0.04%). Because half-life of all daughter nuclides of the ²²²Rn is

shorter as half-life of the ²²²Rn, a state of radioactive equilibrium exists among conterminously elements. In the state of radioactive equilibrium with the ²²²Rn the other daughter nuclides have identical activity, therefore

$$A_{\rm tot} = A_1 + A_2 + A_3,$$

where A_{tot} – total activity; A_1 , A_2 , A_3 – activities of ²²²Rn, ²¹⁸Po and ²¹⁴Pb, respectively. Thus measured activity is 3-multiple of the ²²²Rn activity, what is necessary to take into accounts in calculations. The state of radioactive equilibrium between ²²⁶Ra and ²²²Rn is consolidating during around 10 half-life of ²²²Rn ($T_{1/2}$ = 3.82 days). The radioactive equilibrium among these radionuclides is the main factor that allows determination of ²²⁶Ra through ²²²Rn.

EXPERIMENTAL

This method of separation and determination of 226 Ra is described in M.S. thesis of CEKLOVSKY (2004). The method uses co-precipitation of 226 Ra with barium sulphate in acidic solutions of HCl and H₂SO₄. After decantation and centrifugation of precipitate the alkaline solution of EDTA is added and warmed on water bath up to dissolution. Sample is transferred into emanation container, which is bubbled during 20 min by nitrogen and it is waiting from 4 to 30 days for equilibrium between 226 Ra and 222 Rn.

Method of ²²²Rn determination by emanation technique was developed by KOVACSOVA (2002) and optimised by ANDREJKOVICOVA (2003); ANDREJKOVICOVA et al. (2003). The volume activities of the ²²⁶Ra in the samples were calculated by two methods: the 1st method:

$$a_v = \frac{n_{ex}.C}{3.A.E.V.Y}$$
 [Bq.dm⁻³];

the 2nd method:

$$a_v = \frac{n_{corr}.C}{3.A.B.E.V.Y}$$
 [Bq.dm⁻³]

where n_{ex} – value of impulses numerousness of the sample [s⁻¹], extrapolated from decay curve in the time t_0 (displace of radon into scintillation detector); n_{corr} - impulses numerousness of the sample, corrected to the background $[s^{-1}]$; A – correction factor of ²²²Rn accumulation from closure of emanation container up to time of its transmission into scintillation detector: $A = 1 - e^{-\lambda t_1}$ where t_1 is time of accumulation of ²²²Rn activity; B – correction factor of ²²²Rn decay from end of de-emanation up to beginning of measurement, $B = e^{-\lambda t_2}$ where t_2 is time between the end of de-emanation and the beginning of measurement; C - correction factor of ²²²Rn decay during measurement; $C = \lambda t_3 / (1 - e^{-\lambda t_3})$, where t_3 is measurement time

of sample; *E* - detection effectiveness [%]; *V* – water sample volume [dm⁻³]; *Y* – chemical yield [%]; λ – decay constant of ²²²Rn (0,00755 h⁻¹ or 0,1813 d⁻¹). The values of minimal detection activities (MDA) were calculated according to the relation:

$$MDA = \frac{2,71+4,65 \cdot \sqrt{N_f}}{3 \cdot t_f \cdot E \cdot V} \cdot B \cdot C$$

where N_f - impulses numerousness of background; t_f - time of background measurement [s]. The chemical yield was determined to be 81 %, using gravimetric method.

The evaluation of committed effective dose from consumption of drinking water was realized by calculation of effective dose per 1 year by the consumption of 500 dm³ of drinking water by adult man (300 dm³ of natural mineral water) according to relation:

$$E = a_v \cdot V \cdot h_{ing}$$

where a_v – volume activity of ²²⁶Ra in water sample [Bq.dm⁻³]; V – water receiving by ingestion [dm⁻³.y⁻¹]; h_{ing} - conversion factor for re-calculation of ²²⁶Ra receiving by ingestion on committed effective dose for person from population.

RESULTS AND DISCUSSION

Six samples of drinking water from different sources (water from well, natural mineral water from spring and tap water) were analyzed (see Table 1).

Samples No.3 and No.4 were not dissolved in the solution of EDTA. These samples were unusable for α -activity measurement by radon emanation technique. Calculated value of chemical yield of Ba is 81%. The procedure was verified by using of standard solution of ²²⁶Ra. On the basis of our experiments the following scheme (Figure 1) of the method was used and can be recommended.

No.	Locality	Source of water	* $a_{v1} \pm u(a_{v1})$ [mBq.dm ⁻³] ** $a_{v2} \pm u(a_{v2})$ [mBq.dm ⁻	MDA [mBq.dm ⁻³]	$E(\tau)$ [mSv.rok ⁻¹]
1	Pezinok	well	74 ± 5 75 ± 1.3	2.66	0.01
2	Povazska Bystrica	mineral water	1540 ± 23 1165 ± 4.7	2.85	0.098
3	Povazska Bystrica	tap water	-		-
4	Bratislava	tap water	-		-
5	Bratislava	tap water	70 ± 6.2 69 ± 1.9	2.33	0.0097
6	Spisska Nova Ves	tap water	21 ± 3.8 17 ± 0.9	- 2.6	0.0024

Table 1 Analysed samples of drinking water and volume activities of the ²²⁶Ra

* value a_v calculated by extrapolation from decay curve;

** value av calculated from measured values of impulses numerousness

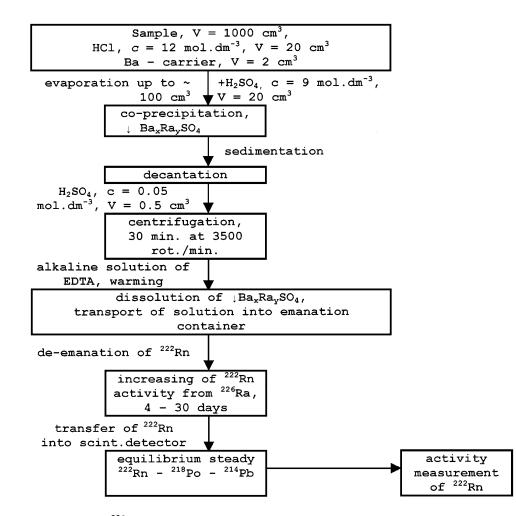


Figure 1 Scheme of ²²⁶Ra determination by radon emanation technique

CONCLUSIONS

The volume activities of ²²⁶Ra in analysed samples were low. Although the volume activities of ²²⁶Ra were determined to be low, the possible health risk from ingestion was calculated. We found out that neither effective dose nor volume activity was higher as the allowed limits.

Acknowledgement

Acknowledgements are due to Dr. M. Vicanova, Institute of Preventive and Clinical Medicine, Bratislava for her help with radon standards.

REFERENCES

- ANDREJKOVICOVA S. 2003: The optimisation for determination of radon-222 in water by Lucas cell technique (in Slovak). - M. S. Thesis, FNS CU, Bratislava. 90 pp.
- ANDREJKOVICOVA S., KURUC J., KOVACSOVA A., MACKOVA J. & RAJEC P. 2003: Optimisation of radon-222 determination in water by Lucas cell technique. In: KURUC J. & KUFCAKOVA J. (Eds.), Separation of Ionic Solutes. Abstracts of the 10th Intern. Conf. Comenius University, Bratislava. pp. 129-130.
- CEKLOVSKY A. 2004: The determination of ²²⁶Ra in water samples (in Slovak). M. S. Thesis, FNS CU, Bratislava. 49 pp.
- KOVACSOVA A. (2002): Determination of radon-222 in water (in Slovak). - M. S. Thesis, FNS CU, Bratislava. 76 pp.